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Abstract
In addition to the conventionally known buckling fold, which has a basic fold-form comprising of single frequency and non-decaying am-
plitudes, folds with other fold-forms having dual frequencies or decaying amplitudes also exist in nature. This research explores whether these
three types of buckling folds, which have been found in elastic material, still exist for visco-elastic or pure viscous materials. Analytical solutions
of the fold-forms for visco-elastic and pure viscous materials are accordingly proposed. The theoretical solutions were then examined by con-
ditions including extremely fast or slow strain rates. The results reveal the following physical characteristics of buckling fold. (1) For the studied
materials, all three types of fold-forms are possible; (2) although pure viscous material itself is strain rate dependent, a strain rate does not in-
fluence the fold-form for a viscous layer embedded in viscous matrix; (3) given the same competence contrast, both the elastic and the viscous
materials have the same wavelength versus the lateral shortening relationship, and (4) two measures (IV and IE) representing the effect of strain
rate on folding, characterized with a range from 0 to 1, are proposed for strain rate dependent cases.
� 2008 Elsevier Ltd. All rights reserved.
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1. Background

Folding of rock strata has been found to be related to the
buckling of competent layer(s) within matrix for pure elastic
or pure viscous materials (Karman and Biot, 1940; Biot,
1961; Currie et al., 1962; Jeng et al., 2001). Field observations
have focused on the wavelength and the thickness of a compe-
tent layer (Sherwin and Chapple, 1968; Donath and Parker,
1964). The understanding and interpretation of folds have
been discussed in many publications (e.g. Biot, 1957, 1959,
1961; Ramberg, 1963, 1964; Johnson, 1970, 1977; Fletcher,
1974, 1977; Hudleston, 1973; Cobbold, 1976, 1977; Price
and Cosgrove, 1990; Smoluchowski, 1909; Abbassi and
Mancktelow, 1992; Johnson and Fletcher, 1994; Mühlhaus
et al., 1994, 1998; Hunt et al., 1996a,b; Zhang et al., 1996,
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2000; Mancktelow, 1999; Mancktelow and Abbassi, 1992;
Schmalholz and Podladchikov, 1999, 2000, 2001aec; Jeng
et al., 2002). It has been found that the wavelength of buckling
folds developed during the layer shortening is related to the
competence contrast, which dominates the interaction between
the competent layer and the surrounding matrix. Depending on
the temperature and the stress during folding, both the layer
and the matrix may exhibit elastic, visco-elastic, or viscous be-
haviors. Table 1 summarizes some existing studies for various
types of materials. Plasticity of rocks can be involved in fold-
ing at shallow depths, but is not yet considered in this research.

It was revealed that both the competent layer and the matrix
tend to show viscous behavior at great depth, such as sites
proximal to the upper mantle where pressure and temperature
conditions are extremely high. With decreasing depth, the
strata exhibit more elastic behavior as a result of reduction
in pressure and temperature. Furthermore, under similar tem-
perature and pressure conditions, the matrix exhibits more vis-
cous behavior than the layer does; conversely, the layer may
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Nomenclature

A coefficient of waveform, indicating the magnitude
of amplitude;

De Deborah number;
E elastic Young’s modulus of the layer;
Eo elastic Young’s modulus of the matrix;
E elastic Young’s modulus of the layer (plane strain

condition); E ¼ E=1� n2;
Eo elastic Young’s modulus of the matrix (plane strain

condition); Eo ¼ Eo=1� n2
o;

~E equivalent Young’s modulus of the layer; ~E ¼
3=2E;

f compressive stress in x-direction applied on layer;
fcr critical compressive stress in x-direction applied on

layer;
G elastic shear modulus of the layer;
Go elastic shear modulus of the matrix;
G elastic shear modulus of the layer (plane strain con-

dition); G ¼ G=1� n;
Go elastic shear modulus of the matrix (plane strain

condition); Go ¼ Go=1� no;
h thickness of the layer;
I inertial moment of the layer;
IE strain rate index corresponding to elasticity; ðIE ¼

1� IVÞ;
IV strain rate index corresponding to viscosity;
k spring constant, Hook’s constant;
L wavelength;
l normalized wavelength; l ¼ L=h
l1 the 2nd normalized wavelength of a dual frequen-

cies fold-form;
l2 the 1st normalized wavelength of a dual frequen-

cies fold-form;
l3 the normalized wavelength of decaying fold-forms;
l3,max the maximum normalized wavelength of decaying

fold-forms;
Ld dominant wavelength;
ld normalized dominant wavelength (Ld/h);
M the moment induced within the layer;
m the value of strain rate _3x;

m3 constant;
n the ratio between k and Eo;
p hydrostatic pressure;
q load applied by the matrix in y-direction;
r parameter relating to amplitude of fold (Biot,

1961);
R competence contrast
RE elastic competence contrast;
RE elastic competent contrast (plane strain condition,

RE ¼ G=Go);
RV viscous competence contrast;
T time elapsed from the beginning of lateral shorten-

ing until the initiation of buckling;
TR relaxation time of the layer;
TRo relaxation time of the matrix;
ðTRÞE�V general relaxation time for an elastic layer in vis-

cous matrix; ðTRÞE�V ¼ ho=G
Yðx; tÞ waveform function of the fold;
a the characteristic value of the characteristic

equation;
3 strain distributed in layer induced by deflection;
3x strain in x-direction; lateral strain;
3y strain in y-direction;
3z strain in z-direction;
3B

x the 3x at which buckling is initiated;
3cr

x the 3B
x at critical (dominant) state;

_3x strain rate in x-direction;
_3y strain rate in y-direction;
_3z strain rate in z-direction;
d the lateral (x-direction) shortening length of the

layer;
h viscosity of the competent layer;
ho viscosity of the matrix;
l frequency of the waveform; ¼ 2p=L;
ld the dominant wavelength ratio;
s0ij the deviatoric stress tensor;
sx normal stress in x-direction;
sy normal stress in y-direction;
sz normal stress in z-direction;
n Poisson’s ratio of the layer;
no Poisson’s ratio of the matrix.
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show more elastic behavior than the matrix. The possible com-
binations that may occur along a profile of the structural level
are shown in Fig. 1. Other combinations, such as a viscous
layer in elastic matrix, are less likely to occur and are not con-
sidered in this work.

For a single competent layer embedded in the matrix, ana-
lytical solutions for elastic, viscous and visco-elastic materials
have been proposed (Karman and Biot, 1940; Biot, 1957,
1959, 1961; Budd and Peletier, 2000; Cobbold, 1976, 1977;
Currie et al., 1962; Fletcher, 1974, 1977; Johnson and
Fletcher, 1994; Mühlhaus et al., 1998; Price and Cosgrove,
1990; Ramberg, 1963, 1964). Further study reveals that, given
the right constitutive relations, even fractal geometries can
result (Hunt et al., 1996b). These solutions focus on fold-
forms with single frequency and non-decaying amplitudes,
like the analytical solutions found in the 1960’s (Biot, 1961;
Currie et al., 1962; Fig. 1).

On the other hand, since fold-forms with dual frequencies
or decaying amplitudes also occur naturally (Fig. 2, Roberts,
1989), analytical solutions for these fold-forms have been ac-
cordingly proposed for elastic material (Jeng et al., 2002). It
has been revealed that fold-forms of two- or three-dimensional
folding can possess more than one frequency, depending on
the viscous and elastic material properties of the strata (Mühl-
haus et al., 1998). As a result, three types of fold-forms are
identified for the elastic layerematrix system (as illustrated



Table 1

Summary of some existing researches on buckle folding

Material Model References

Layer Matrix

Elastic Elastic Smoluchowski (1909), Karman and Biot (1940),

Currie et al. (1962) and Jeng et al. (2001, 2002).

Viscous Viscous Biot (1961), Ramberg (1963), Sherwin and

Chapple (1968), Dieterich and Carter (1969),

Hudleston and Stephansson (1973), Fletcher

(1974, 1977), Hudleston and Lan (1993),

Shimamoto and Hara (1976), Williams et al.

(1977), Smith (1977) and Mühlhaus et al. (1994,

1998).

Elastic Viscous Biot (1961) and Budd and Peletier (2000).

Elastic Visco-elastic Hunt et al. (1996a,b) and Whiting and Hunt

(1997)

Visco-elastic Viscous Schmalholz and Podladchikov (1999, 2000;

2001) and Mühlhaus et al. (1998).

Visco-elastic Visco-elastic Abbassi and Mancktelow (1990, 1992), Zhang

et al. (1996, 2000), Mancktelow (1999),

Schmalholz and Podladchikov (1999, 2000,

2001aec) and Jeng et al. (2002).
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in Fig. 3): (1) Type A e a dual frequencies with non-decaying
amplitude; (2) Type B e single frequency with non-decaying
amplitude, which is often called dominant wavelength; and
(3) Type C e single frequency with decaying fold-form.
Elastic

Competent
layer

Spring

Elastic

Visco-elastic

Viscous

Visco-elastic

Visco-elastic

Matrix

Viscous

Viscous Viscous

Structural
level

Shallow
(crust surface)

Very deep
(upper

mental ?)

Remarks: : Biot, 1961 ; : Currie et al., 1962

Fig. 1. Various combinations of material types used by
For the elastic layerematrix system, the configurations of
the three basic fold-forms are found to be (Jeng et al., 2002):

Type A: YðxÞ ¼ a1sin

�
2p

l1

x

�
þ b1sin

�
2p

l2

x

�
ð1Þ

Type B: YðxÞ ¼ a2sin

�
2p

ld

x

�
ð2Þ

Type C: YðxÞ ¼ e�m3xa3sin

�
2p

l3

x

�
ð3Þ

where ai and bi are constants that control the amplitude and the
phase-shift of the fold and are determined by the boundary
condition inducing buckling of the competent layer. The
term m3 represents the magnitude of amplitude decay. The
definitions of l1, l2, ld and l3 are illustrated in Fig. 3. In addi-
tion to the theoretical solutions, numerical analyses using
finite element method confirm that the three fold-forms can
be formed for elastic materials (Jeng et al., 2002).

When an elastic layer is embedded in elastic matrix and its
Types A and B fold-forms are considered, the wavelengths l are
related to the global, lateral shortening 3B

x , which is induced by
lateral stress f and f ¼ E3B

x , as:

3B
x ¼

p2

3l2
þ Eol

2Ep
ð4Þ
Dual-
frequency

Single-
frequency

Non-decaying amplitude Decaying amplitude

Single-
frequency

Fold-forms

 ; : Jeng et al., 2002 ; : This research.

some existing solutions and the proposed solutions.



Fig. 2. Natural folds with a dual frequencies and a decaying amplitude (Rob-

erts, 1989). The fold in the upper photo exhibits dual frequencies and the one

in the lower photo exhibits decaying amplitude (from the right toward the left

of the photo).

a 
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perturb

εx
cr

Bε x
h

y

x

c

Fig. 3. Schematic illustrations of the three types of fold-forms and the 3B
x � l relatio

analysis. (a) Type A fold-form comprises two frequencies, which can be yielded w

amplitude over the full length of the competent layer (when 3x ¼ 3cr
x ). (c) Type C f

away from the perturbed end ðwhen 3x < 3cr
x Þ.

636 F.S. Jeng, K.P. Huang / Journal of Structural Geology 30 (2008) 633e648
Eq. (3) has been proposed by Currie et al. (1962) and is the
upper part curve shown in Fig. 3. Accordingly, the dominant
wavelength ld is:

ld ¼ 2p

ffiffiffiffiffiffiffiffi
E

6Eo

3

r
ð5Þ

Based on the numerical analysis of Type C fold-forms, an em-
pirical 3B

x � l relationship was proposed as (Jeng et al., 2002):

3B
x ¼

4p2

3l2
� 1

2

ffiffiffiffiffiffiffiffi
E2

o

6E2

3

r
ð6Þ

Fig. 3 illustrates the relations of the wavelength and the lat-
eral shortening, expressed in terms of lateral strain 3B

x , when
buckling occurs for the three types of fold-forms. The curves
are responses of the layerematrix system when buckle folding
occurs at varying 3B

x levels and are hereinafter referred to as 3B
x �

l curves. For an elastic layerematrix system, a greater 3B
x , ex-

ceeding 3cr
x , leads to a dual frequencies fold-form. Types B and

C fold-forms can be obtained when 3B
x equals 3cr

x or is less than
3cr

x , respectively. The 3B
x � l curve is selected to replace the F�

l curve adopted by Jeng et al. (2002), since the measure 3B
x , in

which the influence of the layer rigidity (the Young’s modulus
E and the thickness of the layer h) has been normalized, is di-
mensionless and can represent more general situations.

To verify whether the relations shown in Fig. 3 exist for
visco-elastic or viscous materials, the analytical solutions for
Types A, B and C fold-forms must be studied. As such, this re-
search aims at developing the analytical solutions for all
combinations of the layerematrix systems shown in Fig. 1.

Based on the proposed theoretical solutions listed in Table
1, this paper further explores the mechanism of folding, focus-
ing on the following aspects. (1) The physical characteristics
revealed by these solutions; (2) the transitions of the
Type A fold-form  ( ε > ε x
cr ) 

Type B fold-form  ( ε = ε x
cr ) 

Type C fold-form (ε < ε x
cr ) 

tation
ation 

l1 h

l2 h

ld h

l3 h

nships, which have been obtained from analytical solutions and the numerical

hen 3x > 3cr
x . (b) Type B fold-form is a single frequency wave with a constant

old-form is a single frequency wave characterized by an amplitude attenuation
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visco-elastic material into other materials under extreme strain
rates; (3) the joint influences of elastic and viscous compe-
tence contrasts; (4) the influence of strain rates; and (5) the
discussion of measures of strain rates, e.g. the dominant wave-
length ratio ld (Schmalholz and Podladchikov, 1999, 2000,
2001c). Two measures of strain rates are accordingly proposed
in the present paper.

2. Theoretical solutions for non-decaying fold-forms

Two-component notations are used hereinafter to indicate
the layerematrix system. For instance, the notations EeE,
EeEV and EeV represent the cases of an elastic layer embed-
ded in the elastic, visco-elastic and viscous matrix, respec-
tively. The definitions of symbols, provided that they are not
included in the text, can be found in the attached nomenclature.

The following assumptions are made.

(1) The material models adopted are simplified and idealized.
For instance, the Maxwell model is adopted for visco-
elastic materials.

(2) Since the considered strain rates are slow, inertial forces
are neglected.

(3) Compression is applied at both ends of the model at a con-
stant strain rate, parallel to the competent layer.

(4) The analysis is restricted to a plane strain condition in two
dimensions. At the initial stage of buckling or at the fold
nucleation stage, the amplitude of the folds is small
enough so that a small strain theory is applicable.

(5) Although a two-dimensional waveform is considered, the
governing equation originates from one-dimensional equi-
librium of the layerematrix system; that is, the lateral in-
teraction of stress is not completely involved in derivation.

(6) The layer and the matrix are well connected and separation
will not occur.

The isotropic, linear elastic model is adopted for the elastic
material. The viscous model selected for the viscous material
is related to strain rate as: s ¼ h_3, where s is the induced
stress, h is the viscosity and _3 is the applied strain rate. The
elastic material is compressible, while the viscous material is
incompressible.
2.1. The basic waveform
The configurations of the layer and the surrounding mate-
rial as well as the corresponding definitions are illustrated in
Fig. 4. By observing the folding behaviors of the elastic
layerematrix system (the EeE model) and taking Eq. (4)
for instance, it has been found that the waveform and the
wavelength can alternatively be related to the global shorten-
ing 3B

x , instead of lateral stress f, at the moment of buckling.
As such, the basic waveform can be related to 3B

x as:

Yðx; tÞ ¼ A3B
x ðtÞsinlx ð7Þ

where A is an arbitrary constant and lð ¼ 2p=LÞ is a frequency
of the waveform. If the material behavior is rate independent,
e.g. it is an elastic material, then both Yðx; tÞ and 3B
x ðtÞ are

reduced to YðxÞ and 3B
x , respectively.

The governing equation for buckle folding of an elastic
layer embedded in elastic matrix (the EeE model) is found
to be (Jeng et al., 2002):

q¼ fh
v2Y

vx2
þ 1

12
Eh3v4Y

vx4
ð8aÞ

After substituting Eq. (7) into Eq. (8a) and incorporating
a reactive load exerted by the matrix q ¼ �EolY, the 3B

x � l
relationship for the EeE model is obtained as:

3B
x ¼

p2

3l2
þ Eol

2Ep
ð8bÞ

where E ¼ E=ð1� n2Þ and Eo ¼ Eo=ð1� n2
oÞ are the equiva-

lent of Young’s modulus of the layer and the matrix under
a plane strain condition, respectively.

The 3B
x � l relationship shown by Eq. (8b) is identical with

that proposed by Currie et al. (1962). That is, the waveform
expressed by Eq. (7) can serve as the fundamental waveform
of buckle folding. The corresponding 3B

x � l relationship of
visco-elastic or viscous materials will be further studied
subsequently.
2.2. A viscous layer in the viscous matrix
(the VeV model)
If the viscous material is incompressible, the governing
equation for folding of a viscous layer embedded in the vis-
cous matrix (the VeV case) has been found to be (Biot, 1961):

q¼ fh
v2Y

vx2
þ 1

3
hh3 v5Y

vtvx4
ð9aÞ

q¼�4hol
vY

vt
ð9bÞ

Since the lateral stress f can be related to the lateral strain rate
as f ¼ 4h_3x, after differentiating Eq. (7) with respect to x and t
and substituting the results for Eq. (9), the governing equation
becomes:

�4holA_3xsinlx ¼�4h_3xhAl23B
x sinlxþ 1

3
hh3Al4 _3xsinlx ð10Þ

Further reduction of Eq. (10) leads to the 3B
x � l relation-

ship as:

3B
x ¼

p2

3l2
þ hol

2hp
ð11Þ

where h is the thickness of the layer and l is a normalized,
dimensionless wavelength (¼ L/h).

By taking v3B
x =vl ¼ 0, at which 3B

x ¼ 3cr
x , the dominant

wavelength is found to be ld ¼ 2p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
h=6ho

3
p

, which is identical
with that proposed by Biot (1961). The significance of
Eq. (11) is that, although a viscous material is strain rate



spring

f f

f f

matrix

matrix

y

x

layer

layer

lh = L 

h

y

z

dy

neutral
axis

x

y

h

q

lh = L 

q

ε,ε

a

b

c

.

Fig. 4. Schematic illustrations for the analyzed models. (a) A layerespring model; (b) a layerematrix model; and (c) an illustration for the corresponding

definitions.
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dependent, the wavelength does not depend on the strain rate
but on the accumulated lateral strain 3B

x until the moment of
buckling.
2.3. A visco-elastic layer in the visco-elastic matrix
(the EVeEV model)
The conventional Maxwell visco-elastic model, illustrated in
Fig. 7, is also adopted in this research. If both elastic and viscous
components of the material are incompressible, the constitutive
relationship of incompressible material ðn ¼ 0:5Þ is:

_3ij ¼
_s0ij

2G
þ

s0ij

2h
ð12Þ

where s0ij ¼ sij � pdij is the deviatoric stress tensor; the first
and second terms on the right side of the equation represent
the contribution of elastic and viscous components, respectively.

If the material is loaded under a constant strain rate, starting
from zero initial stress and strain, the variation of stress with
time can be obtained by integrating Eq. (12) as:

s0ij ¼ 2h_3ij

�
1� e�

G
h
t
�

ð13Þ
The constitutive relation under a constant strain rate can be
found by substituting Eq. (13) for Eq. (12):

sij ¼ pdij þ 2h_3ij

�
1� e�

G
ht
�

ð14Þ

When buckling is initiated, the sy includes two com-
ponents: sy induced by folding and sy applied by upper and
lower boundaries. Since sy applied by boundaries will not in-
fluence the equilibrium condition of the buckling layer, this
term can be taken out in later derivation. Furthermore, in
a plane strain condition, 3z ¼ _3z ¼ 0 leads to sz ¼ p.

These two conditions cause Eq. (14) to be:

sx ¼ 4h_3x

�
1� e�

G
ht
�

ð15Þ

When folding occurs, the strain rate in competent layer is related
to the deflection of the layer as _3¼�yv3Y=vtvx2, where y is de-
fined in Fig. 4b. According to Eq. (15), the stress within the com-
petent layer can be expressed in terms of the derivatives of Y as:

s ¼ 4h_3
�

1� e�
G
h
t
�
¼ �4hy

v3Y

vtvx2

�
1� e�

G
h
t
�

ð16Þ
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By integrating stress along the cross-section of the layer, as
shown in Fig. 4b, the induced moment within the layer are
obtained as:

M ¼ 2

Z h
2

0

4h_3
�

1� e�
G
ht
�

ydy¼ 2

Zh
2

0

4hy2 v3Y

vtvx2

�
1� e�

G
ht
�

dy

ð17aÞ

M ¼ 1

3
hh3 v3Y

vtvx2

�
1� e�

G
ht
�

ð17bÞ

Considering the equilibrium of moments at the commence-
ment of folding, the governing equation of the EVeEV model
can be found as:

q¼ fh
v2Y

vx2
þ 1

3
hh3 v5Y

vtvx4

�
1� e�

G
ht
�

ð18aÞ

And the reactive load of the matrix is:

q¼�4hol
vY

vt

�
1� e�

Go
ho

t
�

ð18bÞ

where f is the lateral compressive stress and can be expressed
as f ¼ 4h_3xð1� e�ðG=hÞtÞ.

After differentiating and substituting the basic waveform
Eq. (7) for Eq. (18), the governing equation becomes:

�4holA_3xsinlx
�

1�e�
Go
ho

t
�
¼�4h_3xhAl23B

x sinlx
�

1�e�
G
h
t
�

þ1

3
hh3Al4 _3xsinlx

�
1�e�

G
h
t
�
ð19Þ

If the layer is laterally shortened under a constant strain rate,
the buckle strain 3B

x is the product of strain rate _3x with the
elapsed time until the instance of buckling folding T as 3B

x

¼ _3xT. The incorporation of this condition and further reduc-
tion of Eq. (19) lead to the 3B

x � l relationship of the EVeEV
model as:

3B
x ¼

p2

3l2
þ

hol
�

1� e
� T

TRo

�
2hp

�
1� e

� T
TR

� ð20Þ

where TR and TRo are the relaxation time, as illustrated in
Fig. 7, and are defined as TR ¼ h=G and TRo ¼ ho=Go,
respectively.

Based on Eq. (20), the dominant wavelength is found to be:

ld ¼ 2p

ffiffiffiffiffiffiffi
h

6ho

3

r "
1� e�

T
TR

1� e
� T

TRo

#1=3

ð21Þ

The elapsed time until buckling (T ) is involved in Eqs. (20)
and (21), indicating that the response of the EVeEV model
is rate dependent.
2.4. A visco-elastic layer in the viscous matrix
(the EVeV model)
Similarly, the governing equation for a visco-elastic layer
embedded in the viscous matrix is obtained as:

q¼ fh
v2Y

vx2
þ 1

3
hh3 v5Y

vtvx4

�
1� e�

G
hT
�

ð22Þ

After differentiating and substituting the basic waveform Eq.
(7) for Eq. (22), the governing equation becomes:

�4holA_3xsinlx ¼�4h_3xhAl23B
x sinlx

�
1� e�

G
hT
�

þ 1

3
hh3Al4 _3xsinlx

�
1� e�

G
hT
�

ð23Þ

Further reduction of Eq. (23) leads to the 3B
x � l relationship of

the EVeV model as:

3B
x ¼

p2

3l 2
þ hol

2hp
�

1� e�
T

TR

� ð24Þ

Based on Eq. (24), the dominant wavelength is obtained as:

ld ¼ 2p

ffiffiffiffiffiffiffi
h

6ho

3

r h
1� e�

T
TR

i1=3

ð25Þ

The elapsed time until buckling (T ) is involved in Eqs. (24)
and (25), indicating that the response of the EVeV model is
rate dependent.
2.5. An elastic layer in the visco-elastic matrix
(the EeEV model)
Similar to the previous derivation, the governing equation
for an elastic layer embedded in the visco-elastic matrix can
be determined as:

q¼ fh
v2Y

vx2
þ 1

12
Eh3v4Y

vx4
ð26Þ

After differentiating and substituting the basic waveform
shown in Eq. (7) for Eq. (26), the governing equation
becomes:

�4holA_3xsinlx
�

1� e�
Go
ho

T
�
¼�E3B

x hAl23B
x sinlx

þ 1

12
Eh3Al43B

x sinlx ð27Þ

The relationship E ¼ E=ð1� n2Þ ¼ 2ð1þ nÞG=ð1� n2Þ ¼
2G=ð1� nÞ ¼ 2G is used to further reduce Eq. (27), leading
to the 3B

x � l relationship of the EeEV model as:

3B
x ¼

p2

3l2
þGol

Gp

TRo

T

�
1� e

� T
TRo

�
ð28Þ
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Based on Eq. (28), the dominant wavelength is found to be:

ld ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

12Go

T

TRo

3

s h
1� e

� T
TRo

i�1=3

ð29Þ

If the layer is incompressible and thus n ¼ 0:5 and G ¼ 2G,
Eq. (29) becomes:

ld ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G

6Go

T

TRo

3

r h
1� e

� T
TRo

i�1=3

ð30Þ

The elapsed time until buckling (T ) is involved in Eqs. (28)
and (30), indicating that the response of the EeEV model is
strain rate dependent.
2.6. An elastic layer in the viscous matrix
(the EeV model)
The governing equation for an elastic layer embedded in
the viscous layer is obtained as:

q¼ fh
v2Y

vx2
þ 1

12
Eh3v4Y

vx4
ð31Þ

After substituting the basic waveform in Eq. (7), the governing
equation is reduced and the 3B

x � l relationship of the EeV
model is obtained as:

3B
x ¼

p2

3l2
þ hol

GpT
ð32Þ

Based on Eq. (32), the dominant wavelength is found as:

ld ¼ 2p

ffiffiffiffiffiffiffiffiffiffi
GT

12ho

3

s
ð33Þ

If the layer is incompressible and thus n ¼ 0:5 and G ¼ 2G,
Eq. (33) becomes:

ld ¼ 2p

ffiffiffiffiffiffiffi
GT

6ho

3

s
ð34Þ

The elapsed time until buckle folding (T ) is involved in
Eqs. (32) and (34), indicating that the response of the EeV
model is rate dependent.

The results of the 3B
x � l relationship for the material

models considered in this research and the corresponding
dominant wavelengths are summarized in Table 2.

3. Solutions for the decaying fold-forms

As shown in Fig. 3, the upper part, the lower part of 3B
x � l

relationship and Point A correspond to Types A, C and B fold-
forms, respectively. For any type of material considered, given
the upper part of the 3B

x � l relationship, the lower part should
connect to the upper part at its lowest point, Point A. For
a model in which a layer is supported by springs only, by solv-
ing the differential equation, the lower 3B

x � l relationship
(Type C fold-form) can connect to the lowest point of the up-
per 3B

x � l relationship (Types A and B fold-forms), as shown in
Fig. 3. For other models, even for the EeE model, the lower
3B

x � l relationship cannot connect to the lowest point of the
upper part of 3B

x � l relationship. This problem is induced
when transforming the differential equation from distinct sup-
port elements into continuous matrix. The Type C fold-form of
EeE model had been found using numerical analyses and an
empirical relation was proposed (Jeng et al., 2002).

When the three types of materials (elastic, elasto-viscous and
viscous) are considered, a systematic method is herein developed
to determine the lower 3B

x � l relationship. The need that the lower
part should connect to the upper part at its lowest point, Point A,
serves as a basic requirement for the 3B

x � l relationship of the
Type C fold-form to be developed. The following procedures
demonstrate how a 3B

x � l relationship of the Type C fold-form
is determined and how the above-mentioned criterion is met.
3.1. An elastic layer in the elastic matrix
(the EeE model)
When an elastic layer is supported by elastic springs, as
illustrated in Fig. 4a, the governing equation for buckle folding
is (Karman and Biot, 1940):

~EI
d4Y

dx4
þ fh

d2Y

dx2
þ 2kY ¼ 0 ð35Þ

where k is the Hooke’s constant of spring. By incorporating
the general waveform YðxÞ ¼ eax, the governing equation
Eq. (35) can be obtained as (Jeng et al., 2002):

~EIa4þ fha2 þ 2k ¼ 0 ð36Þ

The solution of Eq. (36) is:

a¼�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�fh�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2h2� 8~EIk

p
2EI

s
ð37Þ

The magnitudes of f 2h2 � 8~EIk determine the fold-form of the
fold. The conditions of f 2h2 � 8~EIk > 0, f 2h2 � 8~EIk ¼ 0 and
f 2h2 � 8~EIk < 0 correspond to fold-forms of Types A, B and C,
respectively.

That is, when an elastic layer supported by elastic springs,
the lower part of 3B

x � l relationship meets the upper part right
at its lowest point. Therefore, it is strategic to make use of the
upper 3B

x � l relationship to derive Type C fold-form’s 3B
x � l

relationship for the EeE model, so that the lower part will con-
nect the upper part at its lowest point. By comparing Eq. (8a)
with Eq. (35), k and Eoð ¼ Eo=ð1� n2

oÞÞ can be related as:

k ¼ n
pEo

hl
ð38aÞ

where n is a constant to be determined, and Eo is the equivalent
of Young’s modulus of the matrix under a plane strain condition.

For the critical state, since f 2h2 � 8~EIk¼ 0, we have 2p=hld¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fh=2~EI

q
and fcr ¼ 3ðEE2

o=6Þ1=3=2, hence ~E¼ 3E=2 is obtained.

Substituting these relationships for f 2h2 � 8~EIk ¼ 0, we have
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f 2
crh

2 ¼ 8ð3E=2Þðh3=12Þk. As such, the value of n is obtained as n
¼ 3=4 and Eq. (38a) becomes:

k ¼ 3pEo

4hl
ð38bÞ

When f 2h2 � 8~E I k < 0, a Type C fold-form appears and
has the following waveform (Jeng et al., 2002):

YðxÞ ¼ e�m3xsinlx ð39Þ

where

m3 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�fhþ

ffiffiffiffiffiffiffiffiffiffi
8~EIk
p

4~EI

s
; l¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fhþ

ffiffiffiffiffiffiffiffiffiffi
8~EIk
p

4~EI

s
ð40Þ

Since the magnitude of l is related to the frequency as l ¼
2p=L, in conjunction with the substitution of Eq. (38b) for
Eq. (40), the 3B

x � l relationship for the Type C fold-form is
accordingly obtained as:

3B
x ¼

2p2

l2
3

�

ffiffiffiffiffiffiffiffiffiffiffi
3Eop

4El3

s
ð41aÞ

Based on Eq. (41a) and the condition that the stress f is posi-
tive, the normalized wavelength is obtained as:

l3 <
ffiffiffi
4

3
p
� 2p

ffiffiffiffiffiffiffiffi
E

6Eo

3

s
¼

ffiffiffi
4

3
p

ld ð41bÞ

The maximum wavelength of the Type C fold-form is l3;max ¼ffiffiffi
43
p

ld, as illustrated in Fig. 3.
3.2. Other models
It can be shown that n ¼ 3=4 is also valid for other mate-
rials considered, therefore using a procedure similar to the
above derivation method, the 3B

x � l relationships (Type C
fold-form) of other models are accordingly obtained as:

(1) VeV model

3B
x ¼

2p2

l2
3

�
ffiffiffiffiffiffiffiffiffiffi
3hop

4hl3

s
ð42aÞ

l3 <
ffiffiffi
4

3
p
� 2p

ffiffiffiffiffiffiffi
h

6ho

3

r
¼

ffiffiffi
4

3
p

ld ð42bÞ

(2) EVeEV model

3B
x ¼

2p2

l2
3

�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3hop

4hl3

1� e
� T

TRo

1� e�
T

TR

s
ð43aÞ
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ffiffiffi
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3
p
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6ho

3

r  
1� e�

T
TR

1� e�
T

TRo

!1=3
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ffiffiffi
4

3
p

ld ð43bÞ

(3) EVeV model
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3B
x ¼

2p2
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(4) EeEV model

3B
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2p2
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3

�
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(5) EeV model

3x ¼
2p2

l2
3

�
ffiffiffiffiffiffiffiffiffiffiffiffi
3hop

2Gl3T
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ð46aÞ
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3
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GT

12ho
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4

3
p

ld ð46bÞ

The solutions of the Types A, B and C fold-forms for the
studied models are summarized in Table 2.

4. Discussion I e Strain rate independent cases
(the EeE and VeV cases)

When the layerematrix system is shortened under a con-
stant strain rate _3x and the layer is buckled at the accumulated
strain 3B

x , the strain rate, the elapsed time until buckling (T )
and 3B

x can be related as: _3xT ¼ 3B
x . Therefore, the elapsed

time T, which is the time to achieve a specific 3B
x under a con-

stant strain rate _3x, can alternatively serve as a measure for
strain rate. Observing the 3B

x � l relationships listed in Table 2,
the EeE case does not involve T; namely, the EeE model is
rate independent.

On the other hand, although the viscous material is strain
rate dependent by nature, the VeV case is another case not in-
volving T and is also rate independent. This indicates that, no
matter how fast or slow the strain rates are, the VeV case will
yield an identical fold-form, as long as the strain 3B

x at buckling
is the same. For strain rate independent cases, EeE and VeV
systems, the resulting fold-forms are determined by 3B

x and the
material properties (E and Eoand , or h and ho).

The 3B
x � l relationships of the EeE and the VeV cases

can be expressed in terms of the competence contrasts
ðRE orRVÞ as:

3B
x ¼

p2

3l2
þ Eol

2Ep
¼ p2

3l2
þ l

2REp
ð47aÞ
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3B
x ¼

p2

3l2
þ hol

2hp
¼ p2

3l2
þ l

2RVp
ð47bÞ

Similarly, all the solutions in Table 2 are further converted to
RE and RV , and the results are listed in Table 3.

Eqs. (47a) and (47b) can be expressed in general as:

3B
x ¼

p2

3l2
þ l

2Rp
ð48Þ

where R is the competence contrast, either REð ¼ E=EoÞ or
RVð ¼ h=hoÞ for the EeE and the VeV cases, respectively.
The 3B

x � l relationship expressed by Eq. (48) is illustrated
in Fig. 5a, which involves the 3B

x � l relationship of Types
A and B fold-forms. The first term on the right side
ðp2=3l2Þ represents the situation when there is no matrix
and is referred as the ‘‘no matrix’’ curve hereinafter. The sec-
ond term on the right side ðl=2RpÞ is the entrance through
which the influence of the matrix on the resulting wavelength
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Fig. 5. The 3B
x � l relationship for either the EeE model or the VeV model. (a)

Typical 3B
x � l relation of Types A and B fold-forms. The dual frequencies 3B

x �
l relationship comprises two parts; the first part p2=3l2 results from no matrix,

and is referred as the ‘‘no matrix’’ curve. The second component 1=2Rp indi-

cates the influence of the competent contrast. (b) Variation of the 3B
x � l curve

with R. The range of 3B
x in which Type C fold-form can occur decreases upon

increasing R.
is introduced. As illustrated in Fig. 5a, providing that 3B
x >

3cr
x , Type A fold-form will be formed, with l1 and l2 mainly

contributed by the ‘‘no matrix’’ and the ‘‘matrix’’ terms on
the right side of Eq. (48), respectively. The wavelengths l1
and l2 resemble second-order and first-order folds (Price
and Cosgrove, 1990) in nature.

When 3B
x is close to 3cr

x (e.g., the critical case l¼ ld), influ-
ences of the two terms on the resulting wavelength are about
the same, as shown in the low part curves in Fig. 5a. As de-
picted by Fig. 5b, an increase of R, or a relatively softer ma-
trix, gives a lower 3B

x � l curve. The lower 3B
x � l curve leads

to: (1) a significant increase in l2; (2) an increase in ld; (3)
only a minor increase in l1; and (4) a smaller 3cr

x in order to
achieve the corresponding ld. As R increases, the term l=2Rp

decreases and, after summation of the two terms at r.h.s. of
Eq. (48), lowers the 3B

x � l curve.
When R approaches infinity, the matrix is extremely soft,

and the 3B
x � l curve approaches the ‘‘no matrix’’ curve, indi-

cating that the ultimately soft matrix has no contribution to de-
termining the fold-form. Under such circumstances, the Type
A fold-form no longer exists since the layerematrix system
converges to a single layer system without the matrix, in
which Eq. (48) converges to 3B

x ¼ p2=3l2, and the fold-form
cannot have dual frequencies.

For the Type C fold-form, the 3B
x � l curves are illustrated in

Fig. 5b. It can be seen that the range of 3B
x in which Type C

fold-form can occur decreases upon increasing R. When R
approaches infinity, or equivalently the ‘‘no matrix’’ situation,
the Type C fold-form cannot occur.
5. Discussion II e The EVeEV model subjected to
extreme strain rates

It has been found that strain rate has significant impact on
the folding behavior of the EVeEV model (Zhang et al.,
2000). For the strain rate dependent cases (the EVeEV,
EeEV, EVeV, EeV cases), it is interesting to identify the
response of the layerematrix system, when the system is
subjected to extreme strain rates, i.e. very fast (T / 0) or
very slow (T / N).

For the EVeEV case, when the strain rate is extremely fast
(T / 0) and with the use of L’Hôpital’s theorem, Eq. (20)
becomes:

3B
x ¼ lim

T/0

p2

3l2
þ

l
�

1� e
� T

TRo

�
2RVp

�
1� e

�RE
RV

T
TRo

�¼ p2

3l2
þ l

2REp
ð49Þ
That is, the response of the EVeEV system converges to the
EeE system upon extremely fast strain rates. This phenome-
non originates from the fact that the Maxwell visco-elastic
model exhibits instant elasticity.

On the other hand, if strain rate is extremely slow (T / N),
Eq. (20) becomes:



Fig. 6. The variation of the 3B
x � l curve with strain rates and influence of

RE=RV for the EVeEV model. The 3B
x � l curve is bounded by the upper

boundary (the elastic 3B
x � l curve, EeE model) and the lower boundary (the

viscous 3B
x � l curve, VeV model). (a) RE=RV ¼ 100=400; and (b) RE=RV ¼

Table 4

Conversion of the layerematrix system to other material models upon extreme

strain rates

Original type

of material

Converted material type Remarks

(Layerematrix) Very fast

strain rate

Very slow

strain rate

1. EeE EeE EeE Strain rate

independent2. VeV VeV VeV

3. EVeEV EeE VeV Strain rate

dependent4. EeEV EeE EeV (no matrix)

5. EVeV e VeV

6. EeV e No matrix
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3B
x ¼ lim

T/N

p2

3l2
þ

l
�

1� e�
T

TRo

�
2RVp

�
1� e

�RE
RV

T
TRo

�¼ p2

3l2
þ l

2RVp
ð50Þ

As a result, the EVeEV system converges to the VeV system
upon extremely slow strain rates.

Under extreme strain rates, the convergence of one layere
matrix system to another system is summarized in Table 4. It
indicates that the EeE and the VeV systems do not change
since they are strain rate independent. The response of the
EeEV, EVeV and EeV cases will be discussed in the follow-
ing sections. Overall, the convergence of one system to an-
other upon extreme strain rates reveals the physical nature of
the system on one hand, and the consistency of solutions on
the other.

6. Discussion III e Factors affecting folding of strain
dependent models
100=120. As such, as shown in Fig. 6a, increasing T=TRo (represents decreas-

ing strain rate) brings the corresponding 3B
x � l curve toward the VeV curve, or

the lower boundary, and vice versa.

6.1. The EVeEV case

6.1.1. The influence of RE/RV

As stated earlier, the EVeEV case may converge to EeE or
VeV cases upon extremely fast or extremely slow strain rates.
In the case that RE ¼ RV , EeE and VeV have the same 3B

x � l
curve, by comparing Eqs. (47a) and (47b). As a result,
RE ¼ RV induces the EVeEV system to become rate in-
dependent. Such a trend can also be seen in Eq. (20); when
RE ¼ RVð ¼ RÞ, Eq. (20) becomes:

3B
x ¼

p2

3l2
þ

l
�

1� e�
T

TRo

�
2RVp

�
1� e

�RE

RV

T
TRo

�
��������
RE=RV¼1

¼ p2

3l2
þ l

2Rp
ð51Þ

However, in nature, RV tends to be 10e100 times more than
RE so that the rate independent behavior of the EVeEV system
is unlikely to happen in reality.

When RV > RE and non-extreme strain rates are applied,
the variation of the 3B

x � l curve with various T=TRo is shown
in Fig. 6. In Fig. 6a, the corresponding EeE and the VeV
cases are plotted with RE=RV ¼ 100=400 (TR¼ 4TRo). Since
the EeE and the VeV cases are extreme conditions of the
EVeEV system, their 3B

x � l curves serve as upper and lower
boundaries of the EVeEV curves enclosing the 3B

x � l curves
of the EVeEV system under various strain rates.

If a dimensionless term T=TRo in Eq. (20) is selected as
a measure representing strain rate, a greater T=TRo represents
a slower strain rate. As such, as shown in Fig. 6a, increasing
T=TRo brings the corresponding 3B

x � l curve toward the VeV
curve, or the lower boundary, and vice versa.

If RE is close to RV , e.g. RE=RV ¼ 100=120, the region en-
closed by the upper (EeE case) and the lower (VeV case)
boundaries is significantly reduced, as shown in Fig. 6b. A
comparison of the case shown in Fig. 6b with the case shown
in Fig. 6a reveals that the strain rate has relatively less influ-
ence to the resulting fold-forms when RV is closer to RE. Over-
all, based on Fig. 6, if RE < RV , the 3B

x � l curves of the EeE
model and the VeV model serve as the upper and the lower
boundaries of the 3B

x � l curves of the EVeEV model,
respectively.
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6.1.2. The index for elastic/viscous states
The influence of strain rate on folding has been studied by

Hunt et al. (1996a), Jeng et al. (2002), Whiting and Hunt
(1997), Zhang et al. (2000) and Schmalholz and Podladchikov,
1999, 2000, 2001aec). Accordingly, measures are proposed to
determine whether the applied strain rate is fast or slow
enough to approach elastic or viscous conditions (Schmalholz
and Podladchikov, 1999, 2000, 2001c).

The Maxwell visco-elastic material is a serial connection of
an elastic component with elastic modulus G and a viscous
component with the viscosity h. When the Maxwell material
is shortened by a constant strain rate m, the variation of in-
duced stress with time is illustrated in Fig. 7. If the stress s

is proportional to the applied strain rate m and the viscosity
h, the stress s can be normalized by m and h to be a dimension-
less stress measure s=hm. As shown in Fig. 7, the intersection
of the initial slope of the curve (which is the elastic property of
the material) with the ultimate stress ðs=hm ¼ 1Þ corresponds
to a time denoted as TR. TR is conventionally called ‘‘the re-
laxation time’’. The degree at which the system approaches
the pure viscosity is controlled by the elapsed time T, as re-
vealed by Fig. 6. If T is further normalized by the relaxation
time TR of the material, T=TR is a dimensionless measure,
which has already excluded the influences of m, h and G. If
T=TR is less than 1, elasticity plays a more important role in
the deformational behavior as shown in Fig. 7. Alternatively,
if T=TR is much greater than 1, viscosity dominates the defor-
mational behavior. Therefore, T=TR can serve as a fundamental
measure of strain rate and can indicate the elastic or the vis-
cous states of the material. When T=TR approaches infinity,
the visco-elastic material reaches pure viscous state.

Although T=TR is one of the fundamental measures of the
viscous state of the material, a proper measure requires more
considerations for the EVeEV model. For instance, the same
magnitude of T=TR ¼ 4 indicates that the material behavior
is very close to a pure viscous state, as shown in Fig. 6b,
whereas for another case shown in Fig. 6a, the material behav-
ior is not so close to a pure viscous state.
increasing G/η
η = 1 x 1014 (MPa sec)

m =10-14 (sec-1) 

σ
G

G = 60000 MPa

G = 35000 MPa

G = 20000 MPa

η
σ

Elapsed time t x 109 (sec)

ε = m

TR

TR = η / G

1.4
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0.8

0.6

0.4

0.2

0
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Fig. 7. The variation of stress with time when the Maxwell visco-elastic ma-

terial is shortened under a constant strain rate. The induced lateral stress can

be expressed as: sðtÞ ¼ hmð1� e�ðG=hÞtÞ. The stress is normalized by viscosity

and strain rate and becomes dimensionless. TR is the relaxation time of the

material.
In fact, existing measures, e.g., the Deborah number De and
the dominant wavelength ratio ld (Schmalholz and Podladchi-
kov, 1999, 2000, 2001c), have incorporated the term T=TR:

De ¼
h

G
_3¼ TR _3¼ TRm ð52Þ

ld ¼
�

h

6ho

�1=3�
4h_3

G

�1=2

¼
�

RV

6

�1=3

ð4TRmÞ1=2 ð53Þ

A comparison of Eq. (52) with Eq. (53) reveals that ld in-
volves one more factor, the viscous competence contrast RV ,
thus leading to a more reasonable representativeness of strain
rate (Jeng et al., 2002).

Moreover, based on Eq. (20), a strain rate index corre-
sponding to the viscous state IV , is proposed as:

IV ¼

�
2� e

� T
TRo � e

�RE
RV

T
TRo

�
2

ð54Þ

This measure is characterized by a range from 0 (pure elastic
state) to 1 (pure viscous state). Meanwhile, this index is based
on the folding behavior of the EVeEV case, as revealed by Eq.
(21), and incorporates the key terms, T=TRo and RE=RV , since
the influence of RE=RV has been demonstrated in Fig. 6. Alter-
natively, a strain rate index corresponding to the elasticity IE is
proposed as IE ¼ 1� IV .

Based on Eq. (20), the variations of the two terms,
1� eT=TRo and 1� eðRE=RVÞðT=TRoÞ, with T=TRo are plotted in
Fig. 8. It reveals that, for increasing T=TRo, the matrix
approaches pure viscous state faster than the layer does since
1� eT=TRo is 1� eðRE=RVÞðT=TRoÞ greater than 1� eðRE=RVÞðT=TRoÞ

when RV > RE. The proposed IV is the average of the two
terms, 1� eT=TRo and, so that it has the significance of the
‘‘mean’’ viscous or elastic state of the layer and the matrix.

When the same T=TRo ¼ 4, as the two cases shown in
Fig. 6a and b, magnitudes of IV ¼ 81% and IV ¼ 97% are help-
ful in indicating how close the material behavior is to the vis-
cous state. As a result, this proposed measure is capable of
0
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−

Fig. 8. The relationship of the proposed strain rate index with the viscous state

of the layer and the matrix. The uppermost curve is the response of the matrix

and the lowest is the response of the layer.
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distinguishing the relative viscous state for the two cases
shown in Fig. 6.

Overall, when the layerematrix system is buckled at time T
with the accumulated lateral strain 3B

x , judgment whether the
time (or the strain rate) is fast or slow, which corresponds re-
spectively to either elastic or viscous states, can be evaluated
by Eq. (54). If the assessed magnitude of IV is close to 1,
the material is close to the viscous state and, therefore, the
applied strain rate is conceived as ‘‘slow’’.
6.2. The EeEV case
For the EeEV case, the elastic layer does not have RV such
that only RE and TRo are available. Upon extremely fast strain
rates ðT=TRo/0Þ, the EeEV model converges to the EeE
model, as summarized in Table 4. Consequently, the 3B

x � l
curve of the EeE model serves as the upper boundary of the
3B

x � l curves of the EeEV model, as shown in Fig. 9.
On the other hand, when the strain rate is extremely slow

ðT=TRo/NÞ, the EeEV model approximates to the EeV
model, as shown in Table 4. In turn, when T=TRo/N, the
3B

x � l curve of EeV model approximates to the ‘‘no matrix’’
curve, as shown in Table 4. Combining these two conditions,
under ultimately slow strain rates, the 3B

x � l curve of the
EeEV model converges to the ‘‘no matrix’’ curve, as shown
in Fig. 9. As a result, the ‘‘no matrix’’ curve serves as the
lower boundary for the 3B

x � l curves of the EeEV model,
whereas a faster strain rate brings the 3B

x � l curve toward
the upper boundary and vice versa.

In fact, the EeEV model is an extreme case of the EVeEV
model in which the layer exhibits no viscosity. The upper
boundary of the EVeEV model corresponds to the 3B

x � l curve
of the EeE model so that the upper boundary of the EeE model
prevails over the EVeEV model. Accordingly, the 3B

x � l curve
of the EeE model and the ‘‘no matrix’’ curve become the upper
and the lower boundaries of the EeEV model.
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Fig. 9. The variation of the 3B
x � l curve with strain rates for the EeEV model.

There are upper and lower boundaries enclosed by the 3B
x � l curve. A slower

strain rate brings the 3B
x � l curve closer to the lower boundary (‘‘no matrix’’

curve), whereas a faster strain rate brings the 3B
x � l curve toward the upper

boundary (EeE model curve).
6.3. The EVeV case
For the EVeV case, the viscous matrix does not have RE

such that only RV and TR are available. Upon extremely
slow strain rates ðT=TRo/NÞ, the EVeV model converges
to the VeV model, as summarized in Table 4, and follows
the behavior of the VeV model, namely the 3B

x � l curve. As
such, the 3B

x � l curves of the EVeV model have a lower
boundary, which is the 3B

x � l curve of the VeV model, as
shown in Fig. 10. On the other hand, when strain rate is faster,
the corresponding 3B

x � l curve moves upward and there is no
upper boundary, as shown in Fig. 10.

The above-mentioned characteristic leads to an interesting
observation: these two extreme cases of the EVeEV model
and the 3B

x � l curve may vary in two different regions. The re-
gions for the EeEV model and the EVeV model are below or
above the 3B

x � l curves of the EeE model or the VeV model,
respectively.
6.4. The EeV case
For the EeV model, the layer exhibits no viscosity and the
matrix exhibits no elastic behavior. In this particular case, nei-
ther RE and RV are available and TR and TRo do not exist.
Based on Eqs. (32), (33) and (46), the EeV system is strain
rate dependent, since T exists in all equations. Therefore, a di-
mensionless measure of strain rate is necessary. Since the term
T=TR ¼ Th=G has a physical significance of the ‘‘relaxation
time’’, it has been adopted in other models. The term ho=G
in Eqs. (32), (33) and (46) has the unit of time and represents
a general aspect of the relaxation time of the global EeV sys-
tem. Therefore, ho=G is defined as ðTRÞE�V , the relaxation
time of the EeV system. As such, Eqs. (32), (33) and (46)
can be expressed in term of ðTRÞE�V , as listed in Table 3.

The variation of the 3B
x � l curve of the EeV system is illus-

trated in Fig. 11. A slower strain rate (or a greater T ) brings
the 3B

x � l curves toward the ‘‘no matrix’’ curve. When strain
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Fig. 10. The variation of the 3B
x � l curve with strain rates for the EVeV model.

There is a lower boundary (VeV model curve). A slower strain rate brings the

3B
x � l curve closer to the lower boundary.
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Fig. 11. The variation of the 3B
x � l curve with strain rates for the EeV model.
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rate is extremely slow, the 3B
x � l curves of the EeV system

have a lower boundary, which is the ‘‘no matrix’’ curve, as
shown in Fig. 11.

In fact, the EeV system is a combinational extreme of the
EeEV and the EVeV models: the 3B

x � l curves of the EeV
system does not have an upper boundary, just like the EVeV
model, and has a lower boundary, the ‘‘no matrix’’ curve,
just like the EeEV model.

For the EeV model, the analytical solution proposed in this
research is strain rate dependent, while the solutions proposed
by Biot (1961) are rate independent. Looking into the deriva-
tion processes, both solutions are based on the same governing
equation, which specifies the stress equilibrium of the layere
matrix system along y-direction. The basic waveform used to
find the solution of the governing equation and considered by
Biot (1961) is Yðx; tÞ ¼ ertsinðlxÞ. As a result, Biot’s proposed
dominant wavelength is ld ¼ p

ffiffiffiffiffiffiffiffiffiffi
E=sx

p
, in which only the stiff-

ness E and the lateral stress sx are involved and the viscosity
of the matrix ho is not involved. Therefore, this solution sug-
gests that the dominant wavelength of the layer will not be
affected by viscous properties of the matrix, as if the matrix
does not exist. It is difficult to perceive that the behavior of
an elastic layer embedded in viscous matrix (the EeV model)
is exactly the same as the behavior of an elastic layer without
being embedded in matrix.

On the other hand, the basic waveform adopted in this re-
search is Yðx; tÞ ¼ A3B

x ðtÞsinlx and the dominant wavelength

is ld ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GT=12ho

3

q
, in which the viscosity of the matrix

does have influence on the wavelength. When the layer is con-
verted from one equilibrium state (shortened along x-direction)
to another buckled equilibrium state (sinusoidal waveform), the
displacement of the layer along y-direction can induce strain
rate (or stress) within the matrix and, in turn, the matrix will ex-
ert vertical stress as q¼�4holðvY=vtÞ, which is part of the gov-
erning equation. As such, the governing equation has already
indicated that viscosity will affect the dominant wavelength.

The proposed solution also indicates that the resulted wave-
length is rate dependent since the alternative measure of strain
rate T is involved. In the VeV model, both the layer and the
matrix are rate dependent and have the viscosity h and ho, re-
spectively. The influence of T does not show up since T is
eliminated in the term RV ¼ ðh=TÞ=ðho=TÞ so that RV is the
only factor controlling the dominant wavelength ðld ¼
2p

ffiffiffiffiffiffiffiffiffiffiffi
RV=63

p
Þ. For the EeV model, the layer does not have h

but has the rate independent elastic modulus. As a result, the
term T cannot be eliminated and the layerematrix system is
strain rate dependent. Overall, the proposed analytical solution
better presents physical significance of the EeV model.

7. Conclusions

The present research derived with analytical solutions that
supplement existing niches and thus allow full solutions for
the elastic, visco-elastic and viscous materials involved in
fold buckling. The three basic types of fold-forms, Types A,
B and C, have been taken into consideration. Further research
on these fold-forms, using the numerical method for instance,
will justify the solutions proposed in the present study.

In this research, the 3B
x � l relationships revealed by the

solutions were explored to unravel the nature and to give phys-
ical insights into buckling folds. The solutions are charac-
terized by: (1) covering all three types of fold-forms; (2)
involving elastic, visco-elastic and viscous materials; (3) pro-
posing indices, including T=TR and Iv, measuring strain rate;
and (4) consistency under extreme conditions, including ex-
treme strain rates or extreme types of materials. The influences
of the strain rates and the competence contrasts ðRE and RVÞ
are demonstrated for each layerematrix system.

This research faces limitations encountered in previous
similar researches as follows.

1. The material models adopted are simplified. More sophis-
ticated material models would be helpful in producing pre-
dictions closer to reality.

2. Folding in nature is three-dimensional, whereas the fold-
forms studied in this research are two-dimensional. More-
over, the governing equations rendering the solutions are
actually one-dimensional. Hence, more studies are re-
quired to identify possible discrepancies induced by the re-
duction of dimensions.

3. The solutions only describe the fold-forms at the moment
of folding initiation, but not the post-buckling behavior.
We must keep in mind that the fold-forms found in the out-
crops have undergone substantial post-buckle deformation.
Caution should be exercised when comparing the results of
the solution with the ones shown in outcrops. Methods
have been proposed to restore outcrop post-buckle folds
to their initial fold-forms (Schmalholz and Podladchikov,
2001a,b).

4. The range of competency contrast (R) discussed in this
work has the order of 100’s, which is used for the purposes
of highlighting the characteristics of the proposed solu-
tions. The R of natural rocks can be much lower than
the ones discussed. Jeng et al. (2002) has discussed the
possible range of R corresponding to a given wavelength
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l and found that if l3 (wavelength of the Type C fold-form)
is also taken into consideration, the range of R would be
reasonable.
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